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INTRODUCTION 
Because prairie dogs function as 
ecosystem engineers and keystone species 
in North America’s grasslands (Fig. 1), 
their conservation and management lies 
at the core of many conservation efforts.  
However, prairie dog management is 
challenging because they are severely 
affected by epizootic plague outbreaks 
caused by the introduced bacterium 
Yersinia pestis1, and highly threatened by 
drought and climate change in the 
southern portion of their range2–4. In fact, 
the formerly-largest remaining colonies 
(in Janos, Chihuahua, Mexico and Conata 
Basin of South Dakota, USA) have 
collapsed by 50-90%, in just over the last 
10 years, largely due to plague, drought, 
and land use impacts. This underscores 
the urgency for conserving prairie dog 
colonies, associated species, and 
mitigating plague and impacts from 
climate and land use change by identifying potential landscapes for conservation action, both now and 
into the future. And,–critically–such areas need to be considered within the context of rangelands that 

Fig. 1. Conceptual diagram illustrating how the 
ecological role of prairie dogs cascades throughout the 
prairie dog ecosystem. Plus signs indicate an increase in 
an ecosystem property as a result prairie dogs; minus 
signs indicate a decrease. (Modified version from 
Davidson et al. 2012 2) 
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are relied on for cattle production and have traditionally harbored complex social cultures resistant to 
prairie dog conservation. 

The capacity for a landscape to support spatially extensive grassland conservation efforts 
depends on a complex suite of abiotic, ecological, social, and economic factors. Mapping of landscape 
capacity to support such conservation efforts in the central Great Plains can provide a much-needed 
tool for optimizing use of scarce funds for grassland conservation and restoration efforts. This is 
especially valuable for contemporary management because of the social, environmental, and economic 
factors that influence where prairie dog complexes can be conserved and expanded across large blocks 
of continuous habitat – to support numerous grassland species.  

To address this need, we are working to identify potential landscapes for conservation, through 
spatial modeling. Our work is examining ecological, political, and social factors, along with changing 
climate and land use to maximize long-term conservation potential and co-existence with human 
activities. Our project involves two major components: Part I, developing a black-tailed prairie dog 
habitat suitability model (HSM) under both current climate and projected future climate scenarios (Fig. 
2) and Part II, identifying suitable landscapes for black-tailed prairie dog (BTPD) ecosystem 
conservation using the conservation planning tool, Zonation. Here we provide the Final Report for the 
BTPD HSM (Part I) (Fig. 2). 
 

 

METHODS 
 
To begin Part I of our analysis, we first obtained BTPD occurrence data and identified their 
geographic range boundary (Fig. 2). We obtained range-wide prairie dog occurrence data from 
Western EcoSystems Technology, Inc. (WEST, Inc.; Hereafter, “WEST data”) to use for our 
primary HSM analysis because colony data was systematically collected across the BTPD 

Fig. 2. Methodological approach for developing the black-tailed prairie dog habitat suitability model (HSM). 
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range over the same time period5. The WEST data is based on prairie dog colonies identified 
using National Agriculture Imagery Program (NAIP) imagery from a stratified random sample of 
2x2mile grid cells extending across the BTPD range within the United States. (Table 1.).  

 
Table 1. Sample size of the WEST data5. The Table below is Table 1.1 from McDonald et al. (2015), 
showing total number of 2 mi by 2 mi grid cells in each state or overlapping BLM managed land, 
number of grid cells sampled (sample size) and date of National Agriculture Imagery Program (NAIP) 
imagery.  

 

 
 
In order to transform the WEST data into a format suitable for data analyses, we generated 

presence and absence points for BTPD using the WEST data. For each colony polygon detected within a 
given grid cell, we assigned one presence point for each hectare within the colony and then randomly 
selected one absence point for every 15 ha within the remaining portion of the grid cell where no 
colonies were found. All points were at least 60 m (two 30 x 30 m raster cells) away from each other, 
and all absence points were at least 500 m from any presence point. This produced approximately 
86,300 presence points and 315,000 absence points, from which we randomly selected the same number 
of absence points as presence points to use in our HSM analysis.  

Our BTPD range boundary is based on current and historical distribution. To determine current 
range we largely followed the WEST5 boundary and extended the range boundary where appropriate 
to reflect the historical range distribution based on museum specimens. Each states’ Western 
Association of Fish and Wildlife Agencies (WAFWA) Prairie Dog Conservation Team (PDCT) member 
approved the Final BTPD boundary for their state, and GPS point locations for all museum specimens 
we used to create our boundary are stored in our project database along with detailed metadata for 
each. 
 The next step in our Part I modelling effort involved determining the best and most current 
spatial data layers available for soils, climate, topography, and land cover for the HSM (Tables 2 and 3 
and Fig. 3). We downloaded and processed data for analyses (described below), and identified suitable 
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land cover types and patch metrics. These efforts yielded a total of 25 environmental input datasets for 
the full study area, based on the data sources in Table 2 (see also Fig. 3).  

Our research team identified and obtained several valuable databases representing major 
improvements in the resolution and accuracy of the input variables. First, we obtained the 2016 
National Land Cover Database (NLCD), which was released by USGS in May of 2019. This 2016 
database represents a major improvement from 2011 NLCD that was previously available, as it 
incorporates new data derived from the USDA’s Cropland Data Layers for 2011 – 2016, and 
implemented new algorithms for identifying developed and paved surfaces.  Second, rather than using 
the National Soil Survey’s SSURGO database to map soil types across the BTPD range, we used a new 
digital soil map of the US (POLARIS 6,7) that builds upon SSURRGO but includes improved 
interpolation of soil texture and other attributes down to a 30-m pixel resolution. One limitation is that 
this improved soils model did not include depth to bedrock, which is an important factor influencing 
BTPD burrowing. We attempted to use the latest SSURGO soils data8 for the depth to bedrock metric, 
compiling depth to bedrock values from individual statewide datasets and averaged over map unit 
components. Many map units had no bedrock depth measure in SSURGO, so we estimated missing 
data using a component-weighted average of maximum horizon depth. Polaris soils data7 are available 
as individual 1-degree tiles per metric per depth, so we downloaded, depth-weighted, and merged the 
Polaris data by soil metric over the study area. The most recent National Elevation Data (NED)9  was 
likewise downloaded as individual 1-degree tiles and merged over the study area. We then corrected 
the NED by identifying and removing as many sink artifacts as possible, while preserving true sinks 
such as playas and perennial water bodies. Next, we used the software TauDEM10 to calculate a 
Topographic Wetness Index as well as slope for the entire BTPD range. The NED was also used to 
create a Terrain Ruggedness Index as well as information on aspect as a function of 'northness' and 
'eastness'. We used the 2016 NLCD11 as the basis of several land cover type metrics including patch 
size, distance to patch edge, and nearest edge type. Finally, current climate data metrics were 
calculated from raw daily gridded meteorological data12 averaged over 1994 - 2014. All continuous 
datasets were normalized to be between 0 and 1 (-1 to +1 in the case of the northness and eastness 
measures) so that inputs had equivalent scales. Categorical data (primarily land cover) were converted 
to one-hot ‘dummy’ variables for use in modeling algorithms that cannot accept categorical inputs. The 
Python and R scripting code written for many of the above calculations is available at 
https://github.com/mmfink/HOTR_Code. TauDEM, which is written in C++, is available at 
http://hydrology.usu.edu/taudem/taudem5/. The remaining data processing was done in ESRI ArcGIS. 
During iterative modeling, we narrowed down environmental inputs based on covariate correlation, 
proportion of deviance explained, and effect on model performance (Table 3). We were forced to drop 
the SSURGO-derived depth to bedrock input due to the large amount of data coded as zeroes 
(indicating no real depth data available), which was biasing model output.  
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Variable Spatial data layer for Habitat Suitability Model 

BTPD colony occurrences Prairie dog occurrences from WEST survey5 

Land Cover USGS National Land Cover Database 201611 

Soils POLARIS 30-m resolution database7 
Metrics: bulk density to 100cm, Sand to 100cm, %Clay to 100cm,  
% organic matter to 100cm, pH to 100cm  

Slope & elevation National Elevation Dataset9 
Metrics: Topographic Wetness Index, Topographic Ruggedness Index, 
slope, aspect 

Climate – current 
 
 
 
 
Climate – future 
(used only for HSMs 
projected into the future) 

Current climate (1994-2014), using gridMet12 
Metrics: Mean annual precipitation (mm), winter + spring & summer + 
fall precipitation, max summer temperature, potential 
evapotranspiration, growing degree days 
 
Future Climate (2100), using MACAv2_METDATA13,14 
Metrics: Mean annual precipitation (mm), winter + spring & summer + 
fall precipitation, max summer temperature, potential 
evapotranspiration, growing degree days 

 

Table 2. Spatial data layers and their sources used in the black-tailed prairie dog (BTPD) habitat suitability model. 

https://www.mrlc.gov/data
http://hydrology.cee.duke.edu/POLARIS/
https://prd-tnm.s3.amazonaws.com/index.html?prefix=StagedProducts/Elevation/1/IMG/
https://app.climateengine.org/
https://climate.northwestknowledge.net/MACA/data_portal.php
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FIG. 3. Some of the spatial layers created for the black-tailed prairie dog (BTPD) habitat suitability model, based 
on BTPD occurrence5, climate12, land cover15, topography9, and soils7. 
 

To determine the best-fit habitat suitability model for our data, we evaluated the performance 
of several different independent models and an ensemble model16,17. Specifically, we created BTPD 
habitat suitability models using a: 1) Generalized Linear Mixed-Model (GLMM), 2) Random Forest 
model (RF), 3) Boosted Regression Trees model (BRT, also known as Generalized Boosted Models or 
GBM), and 4) an ensemble model that combined the outputs of the GLM, BRT, and RF HSMs. Models 
were created using the R packages lme418, randomForest19, and dismo20. The GLMM used the identity of 
the sampling grid cell that each presence or absence point fell within as a random factor. All R code 
used for modeling is available at the previously mentioned GitHub repository. 
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Table 3. All environmental inputs considered, with the final used in bold (in “Label” column). 

Label Description Based On 
bd soil bulk density to 1 m (g/cm3) POLARIS 
clay percent clay to 1 m POLARIS 
DEM elevation (m) USGS NED 
depth depth to bedrock (cm) SSURGO 
distToNon distance (from each pixel) to the nearest non-habitat (m) NLCD 2016 
eastness east-west aspect index USGS NED 
GDD5 annual growing degree-days, base 5, averaged over 1994-2014 gridMET 
hab_non binary designation of grass/shrub habitat (1) or other land cover type 

(0) 
NLCD 2016 

hab_nonpch patch size of contiguous habitat or non-habitat (m2) NLCD 2016 
nearType land cover type of the nearest non-habitat (categorical)* NLCD 2016 
nlcd land cover (categorical)* NLCD 2016 
nlcd_patch patch size of each land cover type (m2) NLCD 2016 
northness north-south aspect index USGS NED 
om percent organic matter to 1 m POLARIS 
PET annual potential evapotranspiration, grass reference (mm), averaged 

over 1994-2014 
gridMET 

ph soil pH to 1 m (soil:water method) POLARIS 
ppt_sf summer – fall (June-November) total precipitation (mm), averaged over 

1994-2014 
gridMET 

ppt_ws winter – spring (December-May) total precipitation (mm), averaged 
over 1994-2014 

gridMET 

ppt_yrly annual total precipitation (mm), averaged over 1994-2014 gridMET 
sand percent sand to 1 m POLARIS 
slope degrees slope USGS NED 
tmax maximum summer (June-August) air temperature, averaged over 1994-

2014 
gridMET 

TRI Terrain Ruggedness Index USGS NED 
TWI Topographic Wetness Index USGS NED 

*Categorical variables were converted into one-hot dummy variables (e.g., nlcd.Grassland, nlcd.Cropland, etc.) for the GLMM 
model. 

Models were trained on a random 70% subset of the full dataset, maintaining relatively equal 
numbers of presence and absence points (Fig. S1). Half of the remaining data (15%) were used to 
evaluate RF and BRT model performance during tuning of the calling parameters (such as number of 
trees). The final 15% of withheld data (“Testing dataset”) were then used to evaluate all three final 
models (Table S1, Fig. S1). All sampling of presence/absence points was done at the level of the grid cell 
(i.e., the cells were randomly sampled, not the points within them). We selected 95% Sensitivity 
because our primary goal was to correctly identify prairie dog habitat.  

The ensemble model was created as a weighted average of the final GLMM, RF, and BRT 
models. Using the mean of Sensitivity=0.95, weights used were calculated by averaging 6 performance 



Davidson et al., p.8 
 

metrics (AUC, TSS, PCC, Kappa, Sensitivity, and Specificity), which were themselves averaged over a 
10-fold cross-validation of the models built on the Training dataset. This gives the higher performing 
models more influence over the ensemble. For the cross-fold validation, each fold randomly sampled 
10% of the sampling grid cells in the Training dataset, so that if a sampling grid cell was selected, all 
presence and absence points within that cell were assigned to that fold. The ensemble was evaluated 
against the Testing dataset as well (Table S1). 

BTPD Habitat Suitability Model under Future Climate 
Next, we projected our BTPD HSM into the future (2100) under two different (representing “best” and 
“worst case”) climate scenarios: 1) warm and wet (IPSL-CM5A-LR_r1i1p1_rcp45); and 2) hot and dry 
(MIROC5_r1i1p1_rcp85). These models best represented the two scenarios for our study region. The 
future climate model scenarios were obtained from MACA v2-METDATA, and were averaged over 
2076-2099 (Table 2). All other model inputs remained the same. From the MACA website, “Climate 
forcings in the MACAv2-METDATA were drawn from a statistical downscaling of global climate 
model (GCM) data from the Coupled Model Intercomparison Project 5 (CMIP5, Taylor et al. 2010) 
utilizing the Multivariate Adaptive Constructed Analogs (MACA13) method with the METDATA26 
observational dataset as training data.” 
 
Ensemble Model Review 
During summer 2020, our team met with biologists from each State individually and with other experts 
on the prairie dog ecosystem to provide detailed State-level review of the ensemble habitat suitability 
map. After extensive review, our team worked to address each of the comments we received. The 
biggest challenge our team faced was modelling the desert grasslands of the American Southwest (AZ, 
southern NM, southwestern TX), where prairie dogs occurred historically, and considerable grassland 
remains. But throughout this region, prairie dogs were extensively exterminated over the last century 
and their populations have not recovered as in other parts of their range, likely due to the increasingly 
arid climate and grassland desertification21–24. Nevertheless, extensive grassland remains in the region 
and colonies do exist, just not in high enough abundance to be well-sampled by the WEST et al. effort. 
To help address this, we obtained additional, recent data (within the last ca. 10 years) for AZ, NM, and 
TX from within the desert grassland ecoregion25 to add to the occurrence locations identified in the 
WEST data. This allowed us to better model habitat conditions where BTPDs occur across the desert 
grassland ecoregion. We randomly selected the same number of grid cells in the WEST et al. data and 
traded them out with the new grid cells covering the additional occurrence data. This way we were 
able to retain the same number of grid samples per state. To account for the higher level of sampling 
effort in Wyoming and Colorado in the WEST5 study, we randomly sampled an equal density of grid 
cells in each state across the BTPD geographic range. We also removed errors in occurrence data 
identified during the reviews by biologists in each State, as some of the occurrences were false 
positives.  In a few instances along the western edge of the BTPD range in New Mexico, we removed 
mapped colonies that were likely to be Gunnison’s prairie dogs rather than BTPD, based on 
consultation with the state wildlife agency.   
 
  

https://climate.northwestknowledge.net/MACA/data_portal.php
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RESULTS  
 
Habitat Suitability Model 
Among the three models used the build the ensemble SDM, GLMM performed most poorly and was 
more restrictive in identifying suitable prairie dog habitat than RF and BRT (Table S1; Fig. S1). Yet, 
GLMM performed better at modelling suitability relative to soils across the BTPD range compared to 
RF and BRT, while RF and BRT modelled suitability relative to climate better than GLMM. Climate 
variables were important predictors across all models, followed by topography and landcover; soils 
were generally less important (Fig. S2). The variables of greatest importance for the GLM were: 
topographic ruggedness, growing degree days, and soil organic matter; whereas variables of greatest 
importance for both the RF and BRT were: summer-fall precipitation, growing degree days, winter-
spring precipitation, landcover, and topographic ruggedness (Fig. S2).  

When we compared performance metrics of all four models (GLMM, RF, BRT, ensemble), the 
Random Forest model performed slightly better than the ensemble, followed by BRT and GLMM 
(Table S1; Fig. S1). However, we selected the ensemble model to build our SDM because not only did it 
perform similarly well to RF, but it also made ecologically most sense when we evaluated each of the 
models independently and the ensemble SDM appeared to reduce the impact of individual model 
biases. Indeed, ensemble SDMs often perform better than single SDMs because they can average out 
uncertainties and biases inherent in different model algorithms. Our final ensemble model exhibited 
high predictive accuracy, with an AUC of 0.96 and error rate of 13% at a Sensitivity (ability to correctly 
identify prairie dog habitat) of 95% (Figs. 4 and S3). We also evaluated the model when Sensitivity was 
equal to Specificity and when Specificity was 95% and found similar model performance (Table S3; Fig. 
S3).  

The most suitable habitat for the BTPD ecosystem under the current climate extends largely 
from northern and eastern New Mexico and the panhandle of Texas and Oklahoma through eastern 
Colorado, eastern Wyoming, southern Montana, western south Dakota, and parts of western Kansas 
and Nebraska (Fig. 5, Table 4). Small patches of suitable habitat occur through the southwest in 
Arizona, southern New Mexico, and southwest Texas. The eastern part of the original prairie dog range 
is largely unsuitable due to the extensive conversion of grassland to cropland, and the southern portion 
of their geographic range is limited largely by climate suitability. Low suitability across most of 
Nebraska is due to excessively sandy soils.    
 

 

Fig. 4. Performance metrics of the black-tailed prairie dog ensemble habitat suitability model. These performance 
metrics reflect when Sensitivity is set to 0.95. 
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Fig. 5. Black-tailed prairie dog (BTPD) ensemble habitat suitability model (HSM), under current climate. Dark 
green shows areas of highest habitat suitability for BTPDs, and beige shows areas of lowest suitability. 
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Table 4. Number of hectares of black-tailed prairie dog habitat that is of low, medium, and high suitability within 
each State and across the BTPD range. 

STATE NAME Low Medium High 
Montana 1,763,366 1,345,433 1,588,702 
North Dakota 340,733 180,275 63,826 
South Dakota 1,711,314 1,277,664 1,470,485 
Wyoming 1,064,272 1,021,180 1,961,438 
Nebraska 692,534 441,174 389,552 
Colorado 1,338,636 1,558,562 4,216,600 
Kansas 631,120 420,207 760,199 
Arizona 13,750 5,789 108 
Oklahoma 280,290 212,791 480,503 
Texas 1,018,266 804,629 1,064,014 
New Mexico 1,169,982 863,150 728,047 
Entire US Range 10,024,502 8,130,936 12,723,491 

 

Projecting suitable habitat into the future under both scenarios (warm and wet; hot and dry) 
shows the suitable habitat shifts northward (Fig. 6). Under the warm and wet scenario, eastern 
Colorado remains a stronghold, and suitable habitat expands across Wyoming, Montana, western 
North Dakota, South Dakota, western Nebraska, Kansas, and central Texas. Suitable habitat under this 
scenario retracts across the Southwest, with reductions especially in southern and eastern NM with the 
northeastern part of NM remaining as highly suitable habitat; it also declines somewhat across the TX-
OK panhandle region. Under the more extreme hot and dry future scenario, suitable habitat 
substantially declines across the Southwest through Texas, Oklahoma and Kansas. Central and 
northeastern New Mexico and eastern Colorado remain favorable habitat but become the southern 
edge of suitable range, with the heart of suitable habitat projected to occur across Wyoming, Montana, 
and the Dakotas. We did not model the future scenarios beyond the known historical range within the 
United States, but it is likely suitable range could expand beyond the historical range in North Dakota, 
Montana, and Canada with the overall northward range shift. 
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Fig. 6. Black-tailed prairie dog (BTPD) habitat suitability models under current climate and future climate 
scenarios. Dark green shows areas of highest habitat suitability for BTPDs, and beige shows areas of lowest 
suitability. 
 

 

FINAL PRODUCTS: 
The BTPD HSM maps for current and future climate are available now to partners upon request 
(Please contact Ana Davidson: ana.davidson@colostate.edu) but will not be made publicly available 
until results are published.   

mailto:ana.davidson@colostate.edu
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SUPPLEMENTARY DOCS   
 
Table S1. Mean 10-fold Cross-Validation Performance metrics on the Testing dataset for the Generalized Linear 
Mixed-Model (GLMM), Random Forest model (RF), and Boosted Regression Trees model (BRT) when sensitivity 
= 95%. 

Model AUC TSS err_rate kappa PCC Sensitivity Specificity Threshold 
GLMM 0.891 0.552 0.224 0.552 0.776 0.95 0.602 0.035 
RF 0.970 0.788 0.106 0.788 0.894 0.95 0.838 0.232 
BRT 0.922 0.624 0.188 0.624 0.812 0.95 0.674 0.165 
Ensemble 0.956 0.734 0.133 0.734 0.867 0.95 0.784 0.206 

 

 

Table S2. Ensemble model metrics (against the Testing dataset) for when sensitivity = specificity, sensitivity = 
95%, and specificity = 95%. Sensitivity (True Positive Rate); Specificity (False Negative Rate). 
 

 AUC TSS err_rate kappa PCC Sensitivity Specificity Threshold 

Sensitivity = Specificity 0.96 0.781 0.109 0.781 0.891 0.893 0.888 0.321 

Sensitivity 95% 0.96 0.746 0.127 0.746 0.873 0.950 0.796 0.217 

Specificity 95% 0.96 0.756 0.122 0.756 0.878 0.806 0.950 0.435 
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Figure S1. Performance metrics of the 10-fold cross validation and tweaking dataset for the Generalized Linear 
Mixed-Model (GLMM), Random Forest model (RF), Boosted Regression Trees model (BRT), and Ensemble when 
sensitivity = 95%. 
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Figure S2. Variable importance plots for the Generalized Linear Mixed Model, Random Forest, and 
Boosted Regression Tree. All values have been normalized so that the sum of all variable importance 
measures for a model = 1. 
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Fig. S3. Ensemble model performance when sensitivity = specificity, sensitivity = 95%, and specificity = 95%. 
Sensitivity (True Positive Rate); Specificity (False Negative Rate). 
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Fig. S4. Ensemble model performance when sensitivity = specificity, sensitivity = 95%, and specificity = 95%. 
ROC curve shows relationship between sensitivity (true positive rate) and specificity (true negative rate). Gray 
solid line indicates random performance. Dashed lines show the values the axes measure for the thresholds at: 
Sensitivity = 0.95 (0.217); Sensitivity = Specificity (0.321); Specificity = 0.95 (0.435).  


	Fig. 6. Black-tailed prairie dog (BTPD) habitat suitability models under current climate and future climate scenarios. Dark green shows areas of highest habitat suitability for BTPDs, and beige shows areas of lowest suitability.

